Monday, January 16, 2012

A = 432 Hz and the OM (136.1 Hz, C#) edition of sonic fabric





Sometime during the mid-1990's I read in a book about yoga that the mantra OM is considered in Buddhist and Hindu traditions to be the primordial tone of the universe, a vibration which forms the basis of all things. As a musician and scientist, this sounded like an esoteric analog to the "Grand Unification Theory" being sought by quantum physicists. I decided in that moment that the existence of a fundamentally unifying vibration was something that I could believe in more strongly than most anything else. Shortly thereafter, I had the Sanskrit OM symbol tattooed onto the back of my neck as a permanent reminder.

After all these years and lots more research, the idea of a primordial tone still intrigues me, and in fact inspires much of my work – especially sonic fabric. I have created several editions of sonic fabric woven from cassette tape recorded with densely-layered compositions made of found, collected, and created sounds and tones. That the resulting material emits a garbled, underwater-like drone when a tape head is drawn along its surface helps to illustrate the notion of a single underlying vibration.

Although I've been mainly focused on weaving disparate sounds together into a single fabric, I've often wondered what kind of sound material woven from tape recorded with only a single tone might emit. But which tone to choose?

OM seemed like an obvious choice...but what precise tone, if any, is associated with OM? After some research, we discovered references to the frequency of 136.1 Hz, which lies between C and C# in western tuning (A = 440 Hz). We also noticed C# mentioned as the note to which male Indian vocalists will pitch their tonic note when singing with the tamboura. Some say it is the note that Tibetan Buddhist monks use as the base tone for chanting the OM mantra (although I was not able to confirm this through a very rudimentary study - I measured the pitch of Tibetan monks chanting OM in various YouTube videos using a chromatic tuner, and could detect no particularly dominant tone).

So, if 136.1 Hz is the OM tone, why? Is it based directly on something quantifiable in nature, such as the cosmic background noise, Kepler's Harmony of the Spheres, or the Schumann Resonances (the constant rumble within the Earth's ionosphere created by lightning strikes)? Interestingly, while 136.1 Hz is between a C and C# using  standard concert pitch (A = 440 Hz), it is precisely a C# when A is tuned to 432 Hz.

Some musicians, scientists, and scholars believe that many ancient Egyptian instruments, Stradivarius violins, and the music of Verdi and other western classical composers may have been tuned to A = 432 Hz. Some believe that tuning A to 432 Hz instead of 440 Hz may actually be healthier for the human body, or even society at large. While the number 432 may or may not be somehow inherently in tune with the forces of nature, it cannot be denied that medical doctors use the resonance of tuning forks  in C = 256 or 128 in the A = 432 system to detect bone fractures.

While all of this is utterly fascinating to us and begs further research, we have not yet come to any conclusions about how or why humans first arrived at 432 Hz or 136.1 Hz.

What we can say for certain is that experiments with the OM edition of sonic fabric are providing some surprising results. The sound recorded onto the fabric - a pure 136.1 Hz tone -  was generated digitally so that it would have no overtones. The normal speed that audiotape runs in a cassette player is 1 and 7/8 inches per second. We dragged the reader along the surface of the fabric at varying speeds, striving to approximate a mechanical effect. We used the largest, most sensitive amplifier in the studio in order to pick up the fullest range of tones possible. The tape head in our hacked Walkman "reader" device is wide enough to pick up several (perhaps 5 or 6) of the compressed strands of tape in the fabric at once. We expected to hear an even, steady, single tone. Instead we heard multiple low tones, some in the range of 136.1 Hz. 

Is it possible that when several strands of tape recorded with 136.1 Hz are "read" simultaneously at the same speed, that several tones are generated? Would this be the case using other frequencies? 

Much more experimentation is needed. Your input is welcome! 

Please stay tuned! 

Alyce Santoro & Julian Mock
Center for the Obvious & (Im)permacultural Research